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\_/ Introduction
Q#?

* The energy spectra of radiation belt electrons take a variety of
shapes—exponential, power law, bimodal, “bump-on-tail”

o Much variation with time and location

e Sharpcontrastwithradiation belt protons

10¢ - 1 100 1 10° M
- arbit= 72 arbit= 72 arbit=_ 87
ul= 40620, | I ul= 45540, | I ut= 90666, |
_ L= 4.01 L= 6,00 + L= 311
AL n=4.85 n=1.07 . n=2.52
104 BT co= 0.948 10 co= 0.GE3 10t co= 0.631
Eo=0.38 =y Eo=0.29 - Eo=0.75
T co= (0.994 | T | +. co= 0584 | N | el co= 05E6
E S E Py E ___*
w102k R4 - w 10tf T - w 102f KS?WO
& R 3 & L IO
! 3 w
E 109k . E 10tk A E 109k A
* Ly = % - Fe
[ . v
L . L u |
L L o ] .
. L. )
% . ; .
w2l €xponential o] o} Lo w2t bump-on-tail -
| |
' . I
.1 1.0 10.0 a1 1.0 10.0 &1 1.0 10.0
E (M) E (M) E (e}

®* Characterizing electron energy spectra is important for analyses such
as spectral inversion of observations, cross-calibration between

instruments

® Spectral variability is an aspect of radiation belt dynamics
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CRRES:

e Operational July 1990-Oct 1991, orbit
323 x 33790 km, 18?incl.

Instruments used:

* MEA: magnetic energy analyzer, 17
differential channels, 153 keV-1.58 MeV

* HEEF: solid state particle telescope,
11 differential channels, 650 keV-8 MeV

Total of 495,000 observations from L=2.5to
L=7-8.8 (oneminute averages)

All available observations were analyzed
with two independent methods: data
clustering and curvefitting

e MEAand HEEF both provide pitch-
angleresolved data, but omni-
directional averages were used in this
study

Observations

average e- flux (E=1.5 Me¥) by Land t, CRRES mission
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\*;{ Data Clustering

e K-Means Data Clustering

— Non-parametric method of grouping spectrabased on distance metric

* Start with random cluster vectors (“centers”)

) i
&, 0 * Assign each Recompute centers as
QC . C;is flux in measurement to nearest average of member
=727 ithlenergy cluster center measurement vectors:;
¢ iterate
g : channel o a o L, |
Chn g d(bl,vk):ga (b, -V, = Vi= o a b; /(Number of Elementsin Cluster)
Measurement e o 1 {kth duster}
vector V,is ki cluster

— Issues: Number of clusters, normalization, missing data, sub-
optimal clustering

* Missing data—restrict to energy channels/measurements with
complete data

* Number of clusters, normalization, & sub-optimal clustering —
Use residuals to recluster exhaustively:

Ros (B3, V4) = mac (b - Vi) Roo(B,V, )= 4 Iy - Ul
i=1

Jain et al. (1999), ACM Comp. Surv., 31(3):264+; Lindstrom et al. (2009), AIAA J, 47:2379.

http://www.data-compression.com/vg.html
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\/ Clustering method

o For clustering, observations were binned in 0.5-L bins '
(except one bin for L=7-9)

— Total: 485,771 observations (L>2.5)

* K-means clustering was applied to MEA spectra (log
values) for each L-bin separately

— MEA data nearly complete

— Result: 1532 subclusters (typically ~100 per L-bin)

o) DrerkEnbonal Rie

° For each subcluster, the average MEA-HEEF spectra
was visually classified into superclusters based on
shape

— Hand-picking was done in order to sort on shape
without bias from magnitude

— Result: 16 superclusters -

og OJrnchisctions Fo

® These 16 superclusters may be classified as
exponential (2), power law (1), and everything else (13)

B
p-:ll:um' ) ST
1: \'I I.rlf

“Everything else” includes cases where cluster
slope is not constant or monotonically
decreasing over MEA range (<1.6 MeV)

g Ornedrectionsl Fhs

— At the right these are subdivided into bump-on-
tail = BOT (7), which have local minima, and S i i
other unusual (6) { e s v i
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Curve fitting method

Each MEA-HEEF spectrum was fit with three
curves

— Exponential J=JjeF
— Power law J=bE™

— 3-segment broken power law (BPL)

Sum of squared errors (SSEs) compared for all
threefits:

— If SSEgxp Oor SSEp < 3 * SSEgp,, classify as
exponential or power law (whichever is better)

flux (s'1 em ! str! ke\l’1)

— This addresses the bias from more fit parameters 10'10_

with BPL (6 vs. 2)

Remaining spectraare BPL—these are divided
into classes based on fit parameters:

— Local minima -> bump-on-tail (BOT)
— Everything else - other (OTH)

— Two subclasses of each are shown at right

Issues for both methods:

— HEEF data availability is limited, giving bias toward
observations with higher fluxes

— Noise floor in both instruments may influence shape

exponential 3

= other (plateau)

10" 10
E (MeV)

Plot shows the average results for curve fit
groups

Solid lines = average of fit parameters

Markers = log average of MEA (*) and
HEEF (o) measurements for group
members

HEEF results are shown only where
data exists for at least 1/3 of group
members
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Results are two independent methods classifying

clustering
electron energy spectra 1

n EXP BOT OTH

clustering 467317 | 64.3% | 10.5% | 9.4% | 15.8%

curve fitting | 494605 | 49.2% | 28.8% | 11.2% | 10.8%

fraction of measurements

Comparison of 466,472 spectra classified by both
methods (4 classes): 4 6 8

L-value

— 64.4% same class s
curvefitting

— 20.0% curve fit as PL but not by clustering =
— 7.0% different BOT/other breakdown § 08
— 8.6% other differences % 06
— Differences are often linked to whether or not HEEF data “i 0.4
is used é 05
Similar distribution in L value £ 0 . : .
— Bump-on-tail at L<3.5-4 ) L-ualie B

— Exponential at L=4-6.5
— Transition to power law and other forms at higher L
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* Bothclustering and curvefitting results
show similar dynamics in the
distribution of spectral types over L and
time

— black line = O’'Brien-Moldwin model
plasmapause

* Exponential spectramostcommonin
outer belt

* Powerlaw spectramostcommon at |
outskirts of outer belt ' W W e = 5 w5

* Bump-on-tailmostcommonin slot Cvaeflttlng

region

* Frequency of other shapes at L<2.5
partly reflects theissue of proton
contamination in MEA

* Transition between BOT and exponential
correlates with plasmapauselocation

450
day ol wear 1886]

- exponential power law - bump-on-tail - other 9
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\;/ Spectral dependence on MLAT

* Thelocation ofthetransition from exponential
to power law distributions at high L values may
be an artifact of CRRES sampling

— CRRES only sampled L>~6.5 for MLAT>15°

* Exponential distribution extends to larger L at
lower MLAT

— Relates to pitch-angle dependence of spectral
form, which we have not examined yet

— Similar MLAT-dependence not observed at low L ! R |y Ll
values ]

dhay o yewr 1380

— |MLAT|=0-10° |
— |MLAT|=10-20%
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clustering

exponential

fraction of measurements

bump-on-tail
other

curve fitting

fraction of measurements

) N .
-2 0 2 4 6
L-value A L relative to PP

®* Spectral distribution relative to the plasmapause location shows a sharper
low-L cutoff for exponential shapes (than distribution vs. L)

— Plasmapauselocation from O’'Brien-Moldwin model
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PP min PP, last 1 day min PP, last 2 days
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exponential
0.5
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e Division between BOT and exponential is more strongly linked to delayed
plasmapause location

— Good fit with 5-day minimum plasmapause location

— Powerlaw and other shapes peak at minimum plasmapause - transitional spectra
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e BOT distributions are observed to develop
in the slot region following storms J

— Plots show development of BOT at L=3.2
following two storms (from red to blue,
curves atone-day intervals)

® Characteristic BOT minimum at ~600 keV,
maximum at ~1.5 MeV

flux (counts s cm2 sr! kev*')

— Possiblesecond minimum at ~350 keV

days 238-262 of 1990

— Thecrossover from MEA to HEEF makes it 10° ;
hard to precisely definethe maximum days 283307 0f 1990
location nl

— However, similar max/min locations were
noted in Ogo 5 data by West et al. (1981,
JGR, 86:2111)

* Development of BOT results from energy-
dependent losses due to wave-particle
Interactions with whistler hiss within the

flux (counts 81 em2 sr! ke

plasmasphere (Imhof et al., 1983, JGR 88:8103; 0
Meredith et al., 2007,JGR 112: A08214. o
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* Electronenergy spectraltypes areafunction of location and aredynamic over time
— Exponential in the main outer belt, power law at higher L values, and BOT in the slot region
— Transition from exponential to power law spectra takes place at higher L values for lower MLAT

* Theboundary between BOT and exponential spectrastrongly correlates with plasmapause
location, reflecting therole of plasmaspheric hissin BOT development

— Good match to a 5-day minimum of the O’Brien-Moldwin plasmapause location

— Modeling slot region BOT with a broken power law generally yields a minima at 350-600 keV and a
maxima at 1.5-2 MeV

— Such BOT is observed to develop following storms, the result of energy-dependent losses to wave-
particle interactions with plasmaspheric hiss

* Alargefraction of cases (~60-90% at L=4-8) are well represented by simple exponential or
power-law curves, but...

* Theothercases arenot

— The nature of the BOT spectral shape complicates curve-fitting, spectral inversion, etc.

— Various bi-modal distributions have been successfully used in the literature at some locations (e.g.
geosynchronous)—this is not feasible for inversion of data with limited numbers of channels, though

* Topicsl/issues for future work:
— examining pitch angle dependence - revisit after further cross-calibration of HEEF, MEA
— fitting other types of curves - using principle components analysis
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